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Rheology of red blood cell aggregation by computer simulation
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Abstract

The aggregation of red blood cells (RBC) induced by the interactions between RBCs is a dominant factor of the in vitro
rheological properties of blood, and existing models of blood do not contain full cellular information. In this work, we
introduce a new three-dimensional model that couples Navier–Stokes equations with cell interactions to investigate
RBC aggregation and its effect on blood rheology. It consists of a depletion mediated aggregation model to describe
the interactions of RBCs and an immersed continuum model to track the deformation/motion of RBCs in blood plasma.
To overcome the large deformation of RBCs, the meshfree method is used to model the RBCs. Three important phenom-
ena in blood rheology are successfully captured and studied via this approach: the shear rate dependence of blood viscos-
ity, the influence of cell rigidity on blood viscosity, and the Fahraeus–Lindqvist effect. As a microscopic illustration of the
shear-rate dependence of the blood’s viscoelasticity, the disaggregation of an RBC rouleau at shear rates varying between
0.125 and 24 s�1 is modeled. Lower RBC deformability and higher shear rates above 0.5 s�1 are found to facilitate disag-
gregation. The effective viscosities at different shear rates and for cells with different deformabilities are simulated. The
numerical results are shown to agree with the reported experimental measurements. The Fahraeus–Lindqvist effect is,
for the first time, studied through three-dimensional numerical simulations of blood flow through tubes with different
diameters and is shown to be directly linked to axial-migration of deformable cells. This study shows that cell–cell inter-
action and cell deformability have significant effects on blood rheology in capillaries.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The aggregation of human red blood cells (RBC) is a dominant factor of the in vitro rheological properties
of blood. Past studies on RBC aggregation [1–3] have confirmed the effects of fibrinogen (a cross-linking pro-
tein) concentration on RBC aggregation. Due to the presence of fibrinogen on cell membranes and globulin in
the plasma, RBCs tend to form aggregates called rouleaus, in which RBCs adhere loosely like a stack of coins.
The presence of massive rouleaus can impair the blood flow through micro- and capillary vessels and cause
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fatigue and shortness of breath. The difference in the percentage of aggregated RBCs may be an indication of
a thrombotic disease. Recently, Neu and Meiselman [4] proposed a theory for depletion mediated RBC aggre-
gation. However, the direct link between RBC aggregation and the rheological properties of blood has not
been established yet. It is therefore of significant clinical relevance to understand blood composition and its
rheological behavior in the context of multiscale and multiphysics hemodynamics. In this paper, the macro-
scopic rheological properties of the blood will be shown to be determined by the cellular scale nature of blood
cells.

Human blood is a biological fluid composed of deformable cells, proteins, platelets, and plasma. In the
study of the heart, arteries, and veins, blood is usually simplified as a homogeneous Newtonian fluid. How-
ever, the rheological behavior of blood flows in micro- and capillary vessel strongly depends on the flow con-
dition, cell deformability, vessel size, and many other biochemical factors [5,6]. Biological phenomena such as
blood coagulation, sickle cell disease, involve the cellular and molecular nature of blood. Eggleton and Popel
[7] have studied deformation of one or two cells under shear flow. Wagner et al. [8,9] have modeled the shear
flow with rigid particles with continuum enrichment methods. However, no method is yet available to study
blood rheology in micro-vessels from the underlying cellular mechanism. Currently, there are three critical
challenges in direct numerical simulation of the blood flow with deformable RBCs: the coupling between com-
plex nonlinear solid motions and fluid flow, handling very large deformation of solids, and computational
expense.

In [10], we have presented a two-dimensional model of blood cell interactions. Due to the difficulties in han-
dling large RBC deformations and the limitations of 2D simulation, only simple illustrative examples of cell–
cell interactions were given there. In this work, we concentrate on the rheological aspects of three-dimensional
flow systems of micro- and capillary vessels which involve deformable cells, cell–cell interactions, and complex
flow conditions. In particular, we propose a new modeling technique which combines the newly developed
immersed finite element method (IFEM) [11,33] with RBC–RBC interaction mechanisms. It consists of a
depletion mediated aggregation model introduced by Neu and Meiselman [4] to describe the interactions of
RBCs and an immersed continuum model to track the deformation/motion of RBCs in plasma. We have used
a meshfree formulation [28] to handle the large deformation of RBCs. Our results suggest that cell interaction
and cell deformability are critical factors that influence the hemorheology in capillaries.

We first describe the discrete RBC model and aggregation model, and illustrate the key ingredients of the
proposed combination of the IFEM and cell interactions. The results are then presented in Section 3, where
the shear rate dependent blood viscosity, the influence of cell rigidity, and the Fahraeus–Lindqvist effect are
studied. The conclusions are presented in Section 4.
2. Method

2.1. Discrete RBC model

In suspension culture, RBC assumes a biconcave disc shape which permits its passage through capillaries
and enables its surface to volume ratio to be significantly higher than that of a sphere. In addition, the bicon-
cave disc shape suggests that the membrane cytoskeleton has both bending and membrane rigidities. The RBC
membrane is modeled as a flexible three-dimensional thin structure enclosing an incompressible fluid, using a
Lagrangian description. Both the cytoplasm inside the RBC and the blood plasma outside the RBC have a
viscosity of around 0.01 dyn s/cm, thus are treated as the same fluid.

The static shape of a normal RBC is a biconcave discoid. The x–y coordinates of the cross-sectional profile
of a RBC are described by
�y ¼ 0:5½1� �x2�1=2ða0 þ a1�x2 þ a2�x4Þ; �1 6 �x 6 1 ð1Þ

with a0 = 0.207, a1 = 2.002, and a2 = 1.122, and the non-dimensional coordinates �x and �y are scaled as x/5 lm
and y/5 lm, respectively.

A Mooney–Rivlin strain energy function is used to depict the material behavior of the RBC membrane
W ¼ C1ðI1 � 3Þ þ C2ðI2 � 3Þ ð2Þ
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with the material properties specified by constants C1 and C2. I1 and I2 are the functions of the invariants of
the Cauchy–Green deformation tensor C defined as Cij = FmiFmj, where Fij = oxi/oXj is the deformation gra-
dient. I1 = Cii and I2 ¼ 1

2
ðCiiCjj � CijCjiÞ. The Mooney–Rivlin or Neo-Hookean strain energy is also adopted

by Skalak et al. [12], Eggleton and Popel [7] and Pozrikidis [13] in RBC deformation modeling. Following [12],

C1 = 2.57 · 106 dyn/cm2 and C2 = 0.257 · 106 dyn/cm2 are used, which is equivalent to a Young modulus of
107 dyn/cm2. It should be mentioned that different constitutive laws can be easily applied for different mem-
brane material properties. This is important when considering sickle cells, which are stiffer than normal RBCs.

2.2. RBC aggregation model

It is well-known that RBCs tend to form rouleaus due to cell interactions. The formation of such rouleaus
depend on the initial position of the cells, the strength of the adhesive force, elastic forces, and hydrodynamic
forces. From the theory of adhesion of two elastic bodies, Skalak et al. [14] gave a general dynamic equation of
rouleau formation based on energy conservation
dU
dt
¼ dW

dt
þ dT

dt
þ dD

dt
� /

dAc

dt
; ð3Þ
where dU
dt is the rate of work done by the external forces, dW

dt is the rate of increase of elastic energy, dT
dt is the rate

of change of kinetic energy, dD
dt is the rate of dissipation of energy (energy dissipated in the viscous fluid) and

�/dAc

dt is the rate of supplied force to separate the contact surfaces. The interaction energy / is defined by
/ ¼
Z 1

y0

rn dy ¼
Z 1

y0

Z
X

f dXdy; ð4Þ
where rn is the net force between two opposing membrane surfaces, y0 is the equilibrium spacing, X is the sur-
face area of the opposing membrane and f is the molecular level interaction force.

However, in [14], Eq. (4) is not evaluated directly due to the lack of the interaction forces at a molecular
level. Also, only steady static cases are considered, thus the kinetic energy, viscous dissipation, and the work
done by external forces are neglected. In this paper, we fill this gap by evaluating cell–cell interaction force
from molecular level while taking into account the dynamic process of RBC rouleau formation/dispersion
in flow field.

Recently, Neu and Meiselman [4] proposed a theoretical model for depletion-mediated RBC aggregation in
polymer solutions. In their derivation, the total interaction energy / per unit area of cell surface is given by the
summation of the depletion interaction energy wD and the electrostatic interaction energy wE as
/ ¼ wD þ wE: ð5Þ

Given a depletion layer thickness D and a separation distance of r between adjacent surfaces, wD is given by
the osmotic pressure and depletion layer thickness as
wD ¼ �2P D� r
2
þ d� p

� �
; ð6Þ
where the osmotic pressure term P ¼ �ðl1�l0
1
Þ

m1
(m1 is the molecular volume of the solvent, l1 and l0

1 are the
chemical potential of the solvent in the polymer solution and in polymer free solution separately), d indicates
the thickness of the attached polymer layer, and p is the penetration depth of the free polymer into the at-
tached layer.

The electrostatic free energy of two cells is calculated by the integration of electric charges as
E ¼ 1

2

Z r

0

Z p

0

wðq; xÞdqdx ð7Þ
in which w is the electrostatic potential between the cells, which depends on the charge density q and x

The integration of the electrostatic free energy finally gives
wE ¼
r2

d2ee0j3

sinhðjdÞðejd�jd � e�jdÞ d P 2d;

ð2jd� jdÞ � ðe�jd þ 1Þ sinhðjd� jdÞ � sinhðjdÞe�jd d < 2d;

�
ð8Þ
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where j�1 is the Debye–Hückel length, � and �0 are the relative permittivity of the solvent and the permittivity
of vacuum.

The total interaction energy (/) versus RBC–RBC separation (r) for various polymer concentrations is
given by Eq. (5) and plotted in Fig. 1. The interaction energy agrees well with the experimental values of inter-
action energy for RBC suspended in various concentrations of DEX 70 or DEX 150 (data from [15]).

In this paper, we focus on studying the influences of RBC aggregation on viscoelastic properties of blood
flows, rather than identifying the mechanism of the RBC aggregation. To simplify the total interaction energy
formulation, a Morse type potential function is used to fit the curve given in Fig. 1. For example, by choosing
r0 = 13.0 nm, De = 4.1 lJ/m2 and b = 0.39 nm�1, we can find that such Morse type potential function fits the
total interaction energy curve of 70 kDa dextran with penetration constant cp

2 ¼ 1 g=dL case very well (Fig.1).
Thus, the interaction forces between two RBCs can be simply modeled as the weak depletion attractive and
strong electrostatic repulsive forces at far and near distances
Fig. 1.
in 70 k
10 nm
/ðrÞ ¼ De½e2bðr0�rÞ � 2ebðr0�rÞ�; ð9Þ

f ðrÞ ¼ � o/ðrÞ
or
¼ 2Deb½e2bðr0�rÞ � ebðr0�rÞ�; ð10Þ
where r0 and De stand for the zero force length and surface energy, respectively, and b is a scaling factor.

2.3. Coupling Navier–Stokes equation with cell interaction

Let us consider the RBCs as incompressible three-dimensional deformable structures in Xs (i.e., RBC mem-
branes) completely immersed in an incompressible fluid domain Xf. Together, the fluid and the solid occupy a
domain X exclusively. This work is based the immersed finite element method (IFEM) [11] and cell–cell inter-
action model.

The immersed finite element method [11] is developed by merging the concept of immersed boundary (IB)
[16,17], finite element, and meshfree methods for nonlinear fluids and solids. In IFEM, independent solid
meshes may be thought of moving on top of a fixed background fluid mesh. This simple strategy removes
the expensive mesh-update cost and enables an efficient coupling of immersed RBCs with the surrounding vis-
cous fluid. In the computation, the fluid spans the entire domain X, thus an Eulerian fluid mesh is adopted; a
Lagrangian solid mesh is constructed on top of the Eulerian fluid mesh.

In the computational fluid domain X, the fluid grid is represented by the time-invariant position vector x;
while the material points of the structure in the initial solid domain Xs

0 and the current solid domain Xs are
Total interactional energy (/) versus RBC–RBC separation (r) for various values penetration constant (defined as cp
2 in [4]) for cells

Da dextran. (a) cp
2 ¼ 1 g=dL, (b) cp

2 ¼ 10 g=dL, (c) fitted curve by a Morse potential described in Eq. (9). The dashed vertical line at
indicates the total glycocalyx thickness for both cells. Reproduced from [4].
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represented by Xs and xs(Xs, t), respectively. The superscript ‘s’ corresponds to solid variables to distinguish
the fluid and solid domains.

In the fluid field calculations, the velocity v and the pressure p are the unknown variables; the solid domain
calculation involves the nodal displacements us, which are defined as the difference of the current and the ini-
tial coordinates: us = xs � Xs.

To delineate the Lagrangian description for the solid and the Eulerian description for the fluid, we intro-
duce different velocity field variables vs

i and vi to represent the motions of the solid in the domain Xs and the
fluid within the entire domain X, respectively. The coupling of these two velocity fields is accomplished with
the Dirac delta function
vs
i ðX

s; tÞ ¼
Z

X
viðx; tÞdðx� xsðXs; tÞÞdX: ð11Þ
As illustrated in details in [18,11], we define the fluid–structure interaction force within the domain Xs as f FSI;s
i ,

where FSI stands for fluid–structure interaction
f FSI;s
i ¼ �ðqs � qfÞ dvi

dt
þ rs

ij;j � rf
ij;j þ ðqs � qfÞgi; in Xs: ð12Þ
The fluid–structure interaction force f FSI;s
i within the domain Xs can be illustrated as the force exerted on the

surrounding fluid from the immersed solid.
The cell–cell interaction forces are applied on the surfaces of each cell
rs
ijnj ¼ f c

i : ð13Þ
The transformation of the weak form from the updated Lagrangian to the total Lagrangian description is
accomplished by changing the integration domain from Xs to Xs

0. Since we consider incompressible fluid
and solid, the Jacobian determinant is 1 in the solid domain, and the transformation of the weak form to total
Lagrangian description yields
Z

Xs
0

duiðqs � qfÞ€us
i dXs

0 þ
Z

Xs
0

dui;jP ij dXs
0 �

Z
Cs

0

duif c
i dCs

0 �
Z

Xs
0

duiðqs � qfÞgi dXs
0 þ

Z
Xs

0

duif
FSI;s
i dXs

0 ¼ 0;

ð14Þ
where the first Piola–Kirchhoff stress Pij is defined as P ij :¼ JF �1
ik rs

kj and the deformation gradient Fij as
Fij := oxi/oXj.

With respect to the cell–cell interaction force, as shown in Fig. 1, the cut-off length is chosen as 0.5 lm,
beyond which the attractive force decays very quickly. In the actual implementation, after the finite element
discretization of the solid domain, a sphere with the diameter of the cut-off length is used to identify the cell
surface Yc within the domain of influence around the cell surface Xc. Hence, the cell–cell interaction force can
be denoted as
f cðXcÞ ¼ �
Z

CðYcÞ

o/ðrÞ
or

r

r
dC; ð15Þ
where r = Xc � Yc, r = iXc � Yci, and C(Yc) represents the cell surface area within the domain of influence
surrounding surface Xc.

The symbol fc represents the cell–cell interaction force at a surface point exerted by the surfaces of other
cells nearby, which has unit of force per unit area. Naturally, the interaction force f FSI;s

i in Eq. (12) is calcu-
lated with the Lagrangian description. Moreover, a Dirac delta function d is used to distribute the interaction
force from the solid domain onto the computational fluid domain X
f FSI
i ðx; tÞ ¼

Z
Xs

f FSI;s
i ðXs; tÞdðx� xsðXs; tÞÞdX: ð16Þ
Hence, the equivalent governing equation for the fluid is derived by combining the fluid terms and the inter-
action force as
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qf dvi

dt
¼ rf

ij;j þ f FSI
i ; in X: ð17Þ
The nonlinear system of equations (17) are solved with the standard stabilized Galerkin method and the New-
ton–Raphson solution technique [19–21]. To improve the computational efficiency, we also employ the
GMRES iterative algorithm and compute the residuals based on matrix-free techniques [22,23].

In particular, we implemented the meshfree reproducing kernel particle method (RKPM) [24–31] for
the solid instead of the finite element method used in [11,10], to handle the large deformation of RBCs.
The higher order smoothness and larger influence domain of the RKPM shape function provide consid-
erable advantages over the conventional finite element methods in solving large structural deformation
problems.

Finally, by approximating the Dirac delta function with the RKPM shape functions, Eq. (11) can be written
as
vs
iI ¼

X
J

viJ ðtÞwJ ðxJ � xs
IÞ; xJ 2 XwI

; ð18Þ
where the discretized delta function wJ (an approximation of d in Eq. (11) is the kernel function introduced in
the RKPM.

Here, the solid velocity vs
I at node I can be calculated by gathering the velocities at fluid nodes within the

domain of influence XwI
. A dual procedure takes place in the distribution process from the solid onto the fluid

grid. The discretized form of Eq. (16) is expressed as
f FSI
iJ ¼

X
I

f FSI;s
iI ðtÞwIðxJ � xs

IÞ; xs
I 2 XwJ : ð19Þ
By interpolating the fluid velocities onto the solid particles in Eq. (18), the fluid within the solid domain is
bounded to solid material points. This ensures that not only the no-slip boundary condition on the surface
of the solid, but also automatically prevents the fluid from penetrating the solid. The incompressibility of
the fluid and Eq. (18) ensure incompressibility, thus volume conservation, of the solid.

3. Results and discussions

The mechanical properties and functions of blood flows are strongly influenced by complex multiscale and
multiphysics factors, four of which, namely cell–cell interaction forces, flow shear rates, cell deformability, and
vessel geometry will be examined with the proposed numerical procedures. In this section, three multiscale
effects in blood rheology are considered in order: the shear rate dependent blood viscosity, the influence of
cell rigidity on blood rheology, and the Fahraeus–Lindqvist effect.

3.1. Peeling force of a RBC rouleau

To verify the various ways of RBC rouleau dispersion, several test cases are conducted. First, a RBC
adhered to a flat surface under pure shear is tested, where rotation of the RBC rouleau is prohibited. In
this case, the RBC has to slide on the adhesive surface. Since the contact surface in this case is quite large,
it takes a large force or energy to overcome the adhesion effect and break the rouleau, as shown in Fig. 2.
Pure shear test of a single RBC at the shear rate of 3.0 s�1 by applying a shear velocity at the top boundary of the fluid domain. The
of the RBC is adhered to a flat surface, thus rotation of the RBC is prohibited. The shear stress is distributed smoothly over the

cell.



Fig. 3. ‘Shear with rotation’ test of a RBC rouleau at the shear rate of 3.0 s�1. The shear stress is localized at the peeling edges, indicated
by the dark color.
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However, if the RBC rouleau is allowed to rotate, which actually occurs in normal shear tests, the RBC
rouleau will rotate first and then the RBCs peel away from the rouleau, as indicated in Fig. 3. Since the
contact surface during the peeling is much smaller than sliding, and the energy required for peeling off
two adhesive surfaces is lower that in sliding, hence it is much easier for RBCs to peel off rather than
slide on each other. As indicated in Fig. 3, when peeling occurs, the shear stress is concentrated on
the peeling contact area, which will peel off locally and initiate further break up. Yet, another way is
to directly pull the rouleau apart along the central axis, which has to resist the adhesive forces. It has
been found in this test case that the rotation of RBC rouleau will make it much easier to peel the rouleau
apart.
3.2. Shear-rate dependent viscosity

The formation or dispersion of the RBC rouleau depends on the flow condition, the hematocrit of the
blood, the fibrinogen density, etc. Here, we focus on the influence of flow condition and hematocrit
(RBC volumetric concentration). It is expected that the lower the shear rate (e.g., the slower the blood
velocity), the larger in size and denser in number are the RBC aggregates. As the shear rate drops to zero,
it is anticipated that human blood becomes one big aggregate, which behaves like a viscoelastic solid. On
the contrary, as the shear rate increases, RBC rouleau tends to break up. Individual RBCs also deform,
elongate, and align with the streamlines. The deformability and the decrease of cell–cell interaction forces
combine to reduce blood viscosity with the increase of the shear rate. As shear rate increases above a certain
level (usually 20 s�1), the blood behaves like a Newtonian fluid with a nearly constant viscosity. For rigid
particles such as hardened red cells and normal leukocytes, bulk viscosity is essentially independent of the
shear rate.

To study the effects of cell aggregation on hemorheology, we put various numbers of RBCs under a shear
flow with different shear rates. The fluid domain is a rectangular box with dimensions of 32 · 20 · 10 lm. The
diameter of the RBCs is 10 lm. RBCs are placed in the middle of the fluid domain with vertical center–center
distance of 3.96 lm. Due to the biconcave shape, the adhesive/repulsive forces mainly exist around the perim-
eter of the RBCs. The properties for both fluid and a single RBC as well as the discretization for each mesh are
summarized in Table 1.



Table 1
Properties of fluid and RBC used for the shear test

Fluid 88,200 nodes qf = 1 g/cm3

81,792 elements l = 0.01 g cm/s

RBC 1743 nodes qs = 1 g/cm3 C1 = 2.57 · 106 dyn/cm2

8016 elements D = 10 lm C2 = 0.257 · 106 dyn/cm2

Fig. 4. (a) Mesh for shear of 10 RBCs. (b) Geometry for shear test to calculate viscosity.
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As illustrated in Fig. 4, a finer mesh is used in the regions of interest, i.e., in center of the shear plane. A finer
mesh provides higher accuracy for these regions with complex flow conditions. The use of a nonuniform fluid
mesh is a unique ability and advantage of IFEM over the IB method [16].

The effective viscosity of the blood is calculated from our simulation by measuring the shear force exerted
by the plasma onto the shear velocity boundary. The initial geometry of the shear simulation is plotted in
Fig. 4(b). A shear velocity of �U0 and +U0 are applied on the top and bottom boundary separately. The fluid
domain has a height of 2H and a length of L. As an example, by applying a boundary shear velocity of 5 lm/s
for both top and bottom surfaces, a shear flow with a rate of 0.5 s�1 is obtained in our simulation.

Periodic boundary conditions are used for the left and right boundary (i.e., the RBCs that move out off the
left boundary re-enter through the right boundary). The implementation of periodic boundary conditions for
the deformable RBCs involves several changes in the calculation. Basically, solid nodes that move out of the
right boundary re-enter from the left boundary. The connectivity of the nodes remains. In addition, the delta
function, RBC nodal position update, and the deformation gradient calculation are corrected for the periodic
boundary.

Without suspending RBCs, the flow velocity in the x direction is given by u = U0y/H and the shear force
per unit width on the top and bottom walls are given by F = lLU0/H. With suspended RBCs, the effective
viscosity of the blood is defined as
Table
Calcul

Numb
Numb
leff (po
leff ¼
HF
LU 0

: ð20Þ
To check the influence of mesh size on our simulation, the effective viscosity of a 10 RBCs cluster under a
shear rate of 0.5 s�1 is measured by using four sets of fluid meshes with decreasing mesh size. The solid mesh
is found to have almost no influence on simulation results with number of nodes above 1000, thus a solid mesh
with 1743 nodes and 8016 elements are used through out our simulations. The calculated effective viscosity for
2
ated effective viscosity at 0.5 s�1 for different fluid mesh sets

er of nodes 172,081 88,200 52,521 17,220
er of elements 162,000 81,792 48,000 15,120
ise) 0.126 0.124 0.117 0.088



different fluid mesh sets are listed in Table 2. For a set of fluid mesh with 88,200 nodes and 81,792 elements, an
effective viscosity of 0.124 poise is obtained, which is within 2% of the value given by the finest mesh with
172,081 nodes and 162,000 elements. Thus, we choose this set of mesh for our shear simulations for reasonable
accuracy and efficiency. A time step of 0.001 s is chosen in our simulation and it takes around one minute in a
PC with 2.0 GHz CPU.

In a set of numerical experiments, we subject RBC aggregates to a shear flow with different shear rates.
First, we put 6 RBCs (corresponds to a hematocrit around 20%) in shear flows with shear rates of 0.25 s�1,
0.5 s�1, and 3.0 s�1, respectively. It is observed that at low shear rate of 0.25 s�1, RBC aggregate rotates as
a bulk, as shown in Fig. 5. The cell–cell interaction forces will restrain the disintegration of RBC aggregates
and introduce elasticity in the blood’s macroscopic mechanical behavior. With the intermediate shear rate, our
numerical simulation demonstrates that after the initial rotations, the RBC aggregate aligns with the shear
direction and then begins to disaggregate as shown in Fig. 6. At even higher shear rate, the RBC aggregate
completely disintegrates and the cells begin to orient themselves into parallel layers as shown in Fig. 7. As evi-
dence of good numerical resolution of the proposed combination of the immersed finite element method and
cell interactions, the fluid vorticities surrounding the deformable cells are clearly captured along with the large
structural motions and deformations.

The change of adhesion energy during different shear processes is plotted in Fig. 8. It is shown that the
adhesion energy first increases, corresponding to the rotation of the rouleau as a whole, then, has a sudden
decay due to the peel off of the membranes, and finally goes to zero if completely peeled off. However, for
low shear rates, the adhesion energy will fluctuate slowly and remain almost constant, corresponding to the
rotation of the rouleau as a whole. The disintegration of RBC aggregates with the increase of the shear rate
is an indication of the decrease of the macroscopic viscosity. This is consistent with the experimental obser-
vation of Chien [1].

To achieve a RBC concentration close to the hematocrit of human blood, we put 10 RBCs in the same fluid
domain, corresponding to a hematocrit around 33%. We put this 10 RBCs cluster under shear flows with dif-
ferent shear rates and measured the effective viscosity as described in Eq. (20). The snap shots of simulations at
the shear rate of 0.25 s�1, 0.5 s�1, and 2.0 s�1 are shown in Figs. 9–11. As can be seen in these figures, the
Fig. 5. The shear of the 6-RBC model at the shear rate of 0.25 s�1 with cell–cell interaction forces, at t = 0 s, t = 2 s, and t = 4 s.

Fig. 6. The shear of the 6-RBC model at the shear rate of 0.5 s�1 with cell–cell interaction forces, at t = 0 s, t



Fig. 10. The shear of the 10-RBC model with the shear rate of 0.5 s�1.

Fig. 8. The adhesion energy change over time for different shear rates.

Fig. 9. The shear of the 10-RBC model with the shear rate of 0.25 s�1.

Fig. 11. The shear of the 10-RBC model with the shear rate of 2.0 s�1.
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RBCs experience larger deformation and are more discrete as the shear rate increases. It was found that shear
influences RBC aggregation in two different ways. Moderate shear rates from 0.05 s�1 to 0.5 s�1 facilitates
aggregation by increasing RBC encounter, whereas high shear rate above 0.5 s�1 causes dispersion of aggre-
gates. A high shear rate flow induces the RBC aggregate to rotate first, then partially disintegrate and even-
tually align the cells into parallel layers of RBCs as shown in Fig. 11. The effective viscosities of the blood at
shear rates between 0.125 s�1 and 24 s�1 are plotted in Fig. 12. The calculated effective viscosity versus shear-



Fig. 12. The effective viscosities of blood at different shear rates. The experimental data is reproduced from [32]. The viscosity measured in
[32] is for RBCs at 45% hematocrit in serum with 0.3 g/100 ml and 0.04 g/100 ml fibrinogen.
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rate plot qualitatively agrees with the experimental results by Chien et al. [32]. There is a large drop on the
viscosity between the shear rates of 0.5 s�1 and 3.0 s�1, indicating the dispersion of RBC rouleaus. The effec-
tive viscosity changes very slowly for shear rate below 0.125 s�1 or above 24 s�1, indicating massive aggrega-
tion of RBCs and parallel dispersion of RBCs separately. A precise comparison to the experimental results,
however, is hindered by the limited domain size and number of RBCs used in the simulation as well as other
complex biochemical factors involved in real blood that is not included in our cell–cell interaction model, and
will be addressed in our future works. Yet, to our knowledge, this is the first paper that use direct numerical
simulation to link the microscopic mechanism of RBC aggregation to the macroscopic blood viscosity.

3.3. Effect of RBC deformability

To study the effect of the deformability of RBCs on blood viscosity, blood flows with rigid, normal and soft
RBCs are simulated separately. The effective viscosity of a dilute suspension of rigid spheres is given by
Einstein as
leff ¼ lð1þ 2:5/Þ; ð21Þ

where l is the viscosity of the suspending fluid and / is the volume fraction of the solid phase (/ � 0.3 in our
simulation). However, there is no theory that predicts the effective viscosity of a suspension of soft spheres
such as RBCs due to the complex nature of the interactions between soft spheres. In this sense, it is valuable
to see how the effective viscosity will change if we replace the hardened spheres with soft spheres.

RBCs of different deformability are put under a shear flow of 2.5 s�1. The stiffness of the RBCs decreases five
times from hardened (C1 = 12.85 · 106 dyn/cm2, C2 = 1.285 · 106 dyn/cm2) to normal (C1 = 2.57 · 106 dyn/
cm2, C2 = 0.257 · 106 dyn/cm2), and from normal to soft cases (C1 = 0.514 · 106 dyn/cm2, C2 = 0.0514 ·
106 dyn/cm2).

As can be seen in Fig. 16, the effective viscosity varies greatly as the shear flow develops. This is due to the
aggregations formed during the shearing that impedes the flow. The periodic formation and break up of
the cell aggregations leads to wide variations in the effective viscosity. Another interesting phenomenon is that
the variations in effective viscosity are smaller for soft cells compared to rigid cells. This is due to the fact that
it is easier for the soft cells to deform and squeeze through the gaps between each other, while rigid cells are
limited by their relative lack of flexibility. This phenomenon is clearly illustrated in Figs. 13–15, where the rigid
cells are pushing toward each other while the soft cells squeeze smoothly.

The effective viscosities of the blood for cells of different deformability are plotted in Fig. 17. The calcu-
lated effective viscosity increases with the increasing stiffness of the cells. However, Fig. 17 reveals that the



Fig. 13. The shear of 7 RBCs with low deformability at the shear rate of 2.5 s�1, at t = 0 s, t = 0.5 s, and t = 1.0 s.

Fig. 14. The shear of 7 RBCs with medium deformability at the shear rate of 2.5 s�1, at t = 0 s, t = 0.5 s, and t = 1.0 s.

Fig. 15. The shear of 7 RBCs with high deformability at the shear rate of 2.5 s�1, at t = 0 s, t = 0.5 s, and t = 1.0 s.

Fig. 16. The calculated effective viscosity vs. time for the shear test of 7 RBCs.
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relationship between the stiffness of the cells and the effective viscosity is not linear, but close to exponential.
The increase in blood viscosity is observed for blood with sickle cells, which are stiffer than normal RBCs,
and is an indication of a disease called sickle cell anemia.

3.4. Fahraeus–Lindqvist effect

It is observed from experiments that the viscosity of blood in narrow tubes is substantially lower than the
bulk viscosity. This viscosity increases with the increase in tube diameter, and approaches an asymptotic value
for tube diameters larger than 0.3 mm. Such tube diameter dependent viscosity of blood is referred to as the
Fahraeus–Lindqvist effect. A physical explanation of this effect is detailed below. The parabolic velocity pro-
file of the capillary flow will lead to the spin of the deformable cells. Due to the spin of deformable RBCs, they
tend to migrate toward the center axis of the capillary and hence, a pure plasma region without RBCs, refereed



Fig. 17. The calculated effective viscosities of the blood for cell with different deformability.
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as the plasma skimming layer, is formed close the wall. As the tube diameter decreases, the area of cross-sec-
tion of the plasma skimming layer is comparable to the central core. The lower viscosity of the cell free zone
will reduce the whole blood viscosity. The smaller the tube diameter, the larger ratio of plasma skimming
region to whole tube, leading to a smaller viscosity.

For Newtonian flow through a tube with circular cross-section, the Hagen–Poiseuille solution gives the
pressure drop per unit length as
Dp
DL
¼ 8lQ

pr4
; ð22Þ
where l is the viscosity of the fluid, r is the radius of the tube, L is the length of the tube, and Q is the volume
rate of the flow. Since blood is a non-Newtonian fluid, Eq. (22) does not hold anymore, and the apparent vis-
cosity can be defined by measuring Dp/DL and Q
lapp ¼
Dp
DL

pr4

8Q
: ð23Þ
Let l0 denote the plasma viscosity, the relative viscosity is lapp/l0.
We designed a set of simulations of blood flow through tubes with different diameters to capture the Fah-

raeus–Lindqvist effect. RBCs are aligned vertically inside a tube with increasing diameters from 11 lm to
30 lm. The number of RBCs increases from 3 to 24 to maintain a hematocrit close to 20%. An inflow with
an average velocity of 10 lm/s is used to drive the flow from left to the right. The flow velocity at side surface
of the tube is fixed at zero, thus enforcing a non-slip boundary condition. The pressure drop per length is
Fig. 18. (a) Mesh for RBCs flow in a tube. (b) Geometry for calculation of apparent viscosity of RBCs flow in a tube.



Table 3
RBCs flow through tubes with different diameters

Tube diameter (lm) 11 15 20 30
Number of RBCs 3 7 12 24
Number of fluid nodes 25,098 27,086 33,360 75,678
Number of fluid elements 121,072 130,811 177,688 415,060

Fig. 19. RBCs flow through a tube with different diameters, at t = 0 s, t = 2.0 s, and t = 4.0 s.
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measured as the pressure difference at the inlet and outlet surfaces divided by the tube length. The mesh and
geometry used for the 7 RBCs flow in a 15 lm tube are plotted in Fig 18. A finer mesh is used close to the tube
surface to resolve the boundary flow. The configurations for RBCs flow in tube with different diameters are
listed in Table 3.
Fig. 20. (a) The radial distribution of the 7 RBCs along a tube with 15 lm diameter. The radial average distance is defined as the average
distance from each cell center to capillary center axis. (b) The effective viscosity change over time.



Fig. 21. The effective viscosity of blood flow through tubes of increasing diameters.
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The figures of simulations of RBCs flow through tubes of various sizes are shown in Fig. 19. The spin/
deformation of the RBCs and the formation of the cell-free zone are accurately captured in our simulation,
as presented in Fig. 19. To quantitatively measure the migration of cells toward the tube center, a parameter,
the radial average distance of cells, is defined as the average distance from each cell center to capillary center
axis. From Fig. 20(a), the radial average distance of cells is decreasing over the time, and hence and more
RBCs are concentrated at the tube center. The effective viscosity of the blood is also decreasing over time,
as shown in Fig. 20(b), since the cell free region near the capillary wall acts like a lubricative layer. A plot
of the effective viscosity of blood flow through tubes with increasing radius is shown in Fig. 21. As it can
be seen, the effective viscosity for blood flow through small tubes are much smaller than the bulk blood vis-
cosity. It also shows that the effective viscosity increases as the diameter of the tube increases. It is reported
from the experiments that the effective viscosity reached a flatten region marking the effective viscosity of bulk
blood when the diameter of the tube is around 0.3 mm. As the diameter of the tube becomes smaller than 10
lm, the effective viscosity increases since the RBCs will block the flow under such small capillary, leading to an
increase in apparent viscosity.

4. Conclusions

The coupling of the Navier–Stokes equations and cell–cell interaction in the framework of the immersed
finite element method and meshfree method provides a unique tool to model complex blood flows with
deformable RBCs within micro- and capillary vessels in three dimensions. The microscopic mechanism of
RBC aggregation is linked seamlessly to the macroscopic behaviors of the blood, such as the shear rate depen-
dent viscosity of the blood. This is the first attempt to use a multiscale numerical approach to study the rhe-
ology of RBC aggregation. The simulated disaggregation of a RBC rouleau at different shear rates clearly
explains the effects of shear rates on RBC rouleau break-up. The viscosity of deformable cells is shown to
be different from the rigid case that is usually modeled in the literature. The Fahraeus–Lindqvist effect is also
clearly illustrated in our simulation.
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